ESCOLA TÉCNICA ESTADUAL FREDERICO GUILHERME SCHMIDT

TÉCNICO EM ELETROMECÂNICA

ANDRIEL YHAGO VIEIRA JOÃO HENRIQUE GUNDEL DOS SANTOS VICTOR MEINCKE CORRÊA

ANDRIEL YHAGO VIEIRA JOÃO HENRIQUE GUNDEL DOS SANTOS VICTOR MEINCKE CORRÊA

GERADOR TERMOELÉTRICO PARA BANCADAS DE SOLDA

Projeto de Trabalho de Conclusão de Curso Técnico apresentado ao Curso de Eletromecânica da Escola Técnica Estadual Frederico Guilherme Schmidt como requisito para aprovação nas disciplinas do curso sob orientação da professora Linamir Rodrigues e coorientação do professor Thiago Schmidt

RESUMO

O presente trabalho aborda o desenvolvimento de um gerador termoelétrico (TEG) para bancadas de solda, com o objetivo de aproveitar o calor residual gerado durante o processo de soldagem, reduzindo o desperdício energético e aumentando a eficiência industrial. A pesquisa é de caráter aplicado, experimental, descritivo e quantitativo, envolvendo a concepção, montagem e testes de um protótipo composto por módulos termoelétricos, dissipadores com cooler, sensores de temperatura, multímetro digital e bateria automotiva para armazenamento de energia. A metodologia incluiu a análise de viabilidade técnica e econômica, realização de ensaios para medir a geração de energia elétrica em diferentes condições térmicas e avaliação da eficiência do sistema, respeitando normas técnicas e regulamentos de segurança. Espera-se que o protótipo gere aproximadamente 12,3 W por módulo com diferença de temperatura de 750 °C, suficiente para alimentar sensores e pequenos dispositivos auxiliares da bancada. Os resultados esperados indicam contribuições socioeconômicas, ao reduzir custos operacionais, técnico-científicas, ao fornecer dados sobre eficiência de TEGs em processos de soldagem, e ambientais, ao aproveitar calor residual que seria perdido. A pesquisa também evidencia a viabilidade de implementação do sistema em laboratórios e pequenas indústrias, oferecendo uma alternativa sustentável e inovadora para processos industriais de soldagem. Limitações potenciais incluem degradação térmica do módulo e variações de temperatura que podem afetar a eficiência, mas espera-se que os resultados parciais confirmem o desempenho projetado.

Palavras-chave: gerador termoelétrico; calor residual; eficiência energética; bancada de solda; TEG.

LISTA DE FIGURAS

Figura 1 – Representação esquemática do efeito Seebeck	18
Figura 2 - Desenho Mecânico	21
Figura 3 - Esquema Elétrico.	22

LISTA DE TABELAS

Tabela 1 – Estado da arte.	13
Tabela 2 - Cronograma.	23
Tabela 3 - Recursos	24

LISTA DE ABREVIATURAS E SIGLAS

ABVED Associação Brasileira das Empresas de Vendas Diretas

ALCA Aliança de Livre Comércio das Américas

BSR Business for Social Responsibility

FGV Fundação Getulio Vargas

IBASE Instituto Brasileiro de Análises Sociais e Econômicas

ONGs Organizações Não-Governamentais

OSC Organização da Sociedade Civil

ABNT Associação Brasileira de Normas Técnicas

NBR Norma Brasileira Regulamentadora

TEG Módulo Termoelétrico

LISTA DE SÍMBOLOS

W Watt

N Newton

Hz Hertz

V Voltz

SUMÁRIO

1. INTRODUÇÃO	9
1.1 TEMA E SUA DELIMITAÇÃO	10
1.2 PROBLEMA	10
1.3 OBJETIVOS	11
1.3.1 OBJETIVOS GERAL	11
1.3.2 OBJETIVOS ESPECÍFICOS	11
1.4 JUSTIFICATIVA	12
2. ESTADO DA ARTE	13
2.1 RESUMO	13
2.2 COMPARAÇÃO	14
3.1 EFICIÊNCIA ENERGÉTICA NO SETOR INDUSTRIAL	16
3.2 GERADORES TERMOELÉTRICOS E O EFEITO SEEBECK	16
3.3 APLICAÇÕES INDUSTRIAIS DOS TEGS	16
3.4 VIABILIDADE TÉCNICA E ECONÔMICA	17
3.5 LACUNAS NO CONHECIMENTO E CONTRIBUIÇÃO DA PESQUISA	17
4.0.1 MÉTODOS E PROCEDIMENTOS	19
4.0.2 FERRAMENTAS E TÉCNICAS UTILIZADAS	19
4.0.3 LOCAL DE ESTUDO	19
4.0.4 PERÍODO DE REALIZAÇÃO	20
4.0.5 TESTES E ENSAIOS PROPOSTOS	20
4.0.6 CONSIDERAÇÕES NORMATIVAS	20
7.1 PRODUTO FINAL DA PESQUISA	25
7.2 DESEMPENHO ESPERADO	25
7.3 CONTRIBUIÇÃO SOCIOECONÔMICA, TÉCNICO-CIENTÍFICA E AMBIENTAL	26
7.4 VIABILIDADE E RESOLUÇÃO DO PROBLEMA DE PESQUISA	26
7.5 RESULTADOS PARCIAIS E LIMITAÇÕES	27
7.6 PROJEÇÕES FUNDAMENTADAS	27

1. INTRODUÇÃO

No cenário industrial, a eficiência energética tornou-se um fator crucial para a sustentabilidade e a redução dos custos operacionais, de acordo com empresas onde se vê essa necessidade. Processos como soldagem geram quantidades relevantes de calor residual devido à energia térmica dispensada para a junção das peças. Porém, exceto por algumas técnicas de reaproveitamento ineficientes e caras, essa energia é majoritariamente perdida no ambiente.

Como tal, o presente trabalho objetiva o desenvolvimento e a análise de um gerador termoelétrico para bancadas de solda, funcionando como uma forma inovadora de aliviar o desperdício térmico. Geradores termoelétricos são dispositivos que utilizam o efeito Seebeck para converter calor em eletricidade em vez de pressão ou direcionamento do gás. Em outras palavras, a utilização de sistemas termoelétricos em bancadas de solda pode possibilitar o uso produtivo do calor residual para alimentar, por exemplo, sensores, sistemas de monitoramento e até diminuir a dependência de eletricidade da bancada.

A partir deste dispositivo é possível que cada módulo TEG (Gerador Seebeck) quadrado (lados de 64,5mm e espessura de 8,5mm) gera 12,3W quando a temperatura do lado quente é de 800 °C e a do lado frio é de 50 °C. E, com isso, melhorar a eficiência energética industrial. Deste modo, será necessário analisar o funcionamento do gerador, o desempenho observado, sua eficiência em diferentes condições e a possibilidade de utilização em bancadas de solda. A viabilidade técnica e econômica de tal implementação deverá ser investigada, ou seja, quais são os custos e vantagens em termos da redução de desperdício térmico e consumo de energia. Por fim, também é interessante considerar o uso eventual de energia gerada para alimentar sensores ou outros dispositivos.

1.1 TEMA E SUA DELIMITAÇÃO

Este trabalho tem como tema o aproveitamento do calor residual em processos de soldagem por meio de geradores termoelétricos, com foco na aplicação prática da eficiência energética industrial. A pesquisa se delimita ao desenvolvimento e análise da utilização de módulos termoelétricos (TEG) em bancadas de solda no setor metalúrgico, visando à conversão do calor desperdiçado em energia elétrica capaz de alimentar sensores e sistemas auxiliares. O estudo abordará a viabilidade técnica e econômica da implementação desses dispositivos, considerando os conhecimentos do curso técnico em Eletromecânica e sua aplicação nas diferentes áreas que envolvem energia, eletricidade e processos mecânicos.

1.2 PROBLEMA

É tecnicamente e economicamente viável implementar geradores termoelétricos em bancadas de solda industriais para converter o calor residual em energia elétrica, contribuindo para a eficiência energética e a redução do desperdício térmico no setor metalúrgico?

1.3 OBJETIVOS

1.3.1 Objetivo Geral

Investigar a viabilidade técnica e econômica da utilização de geradores termoelétricos em bancadas de solda industriais, com o intuito de converter o calor residual em energia elétrica e promover a eficiência energética no setor metalúrgico.

1.3.2 Objetivos Específicos

- Analisar o funcionamento dos módulos termoelétricos (TEG) e os princípios do efeito Seebeck aplicados à conversão de calor em energia elétrica.
- Avaliar o desempenho dos geradores termoelétricos em diferentes condições de temperatura em bancadas de solda, identificando sua eficiência energética.
- Verificar a viabilidade técnica e econômica da implementação desses dispositivos no ambiente industrial, considerando custos, benefícios e possíveis aplicações práticas, como a alimentação de sensores e sistemas auxiliares.

1.4 JUSTIFICATIVA

A crescente demanda por soluções sustentáveis na indústria torna urgente o desenvolvimento de tecnologias que aumentem a eficiência energética e reduzam o desperdício de recursos. Em processos industriais como a soldagem, grandes quantidades de energia térmica são dissipadas no ambiente sem aproveitamento. Este cenário revela uma lacuna significativa tanto na literatura técnica quanto na prática industrial: a ausência de métodos viáveis e acessíveis para o reaproveitamento do calor residual.

A presente pesquisa busca contribuir para o avanço do conhecimento na área da Eletromecânica por meio da análise e aplicação de geradores termoelétricos (TEG), dispositivos baseados no efeito Seebeck, capazes de converter calor em energia elétrica. A investigação da viabilidade técnica e econômica desses dispositivos em bancadas de solda pode gerar dados inéditos e relevantes, ampliando o entendimento sobre sua aplicação prática em ambientes industriais.

Além da relevância científica, o estudo também possui forte importância tecnológica e ambiental. A possibilidade de utilizar a energia gerada para alimentar sensores, sistemas de monitoramento ou outros dispositivos auxiliares representa uma inovação com potencial de reduzir o consumo elétrico da bancada e os custos operacionais da empresa. Do ponto de vista econômico, a reutilização do calor pode diminuir despesas com energia elétrica; ambientalmente, contribui para a redução do desperdício energético e da emissão de calor no ambiente de trabalho.

Dessa forma, o desenvolvimento desta pesquisa se justifica por sua contribuição à inovação tecnológica, ao avanço das práticas sustentáveis e à busca por soluções eficientes para problemas reais enfrentados pela indústria metalúrgica.

2. ESTADO DA ARTE

Tabela 1 - Estado da Arte

Titulo	Autores	Ano
Análise da geração de energia elétrica por meio da utilização de conversores do tipo TEG em lingotamento contínuo de aços	Corrêa, L. M.; Zucareli, M. F.; Melo, A. M. – UFRJ	2019
Desenvolvimento e estudo de um gerador termoelétrico para recuperação de calor residual	Santos, G. F. – Universidade Federal de São Paulo (UNIFESP)	2022
Geradores termoelétricos para conversão de calor residual em unidades de tratamento de resíduos	Silva, R.; Souza, T.; Martins, V. – APESB	2020

Fonte: Os autores

2.1 RESUMO

A. Análise da geração de energia elétrica por meio da utilização de conversores do tipo TEG em lingotamento contínuo de aços

Corrêa, L. M.; Zucareli, M. F.; Melo, A. M. – UFRJ (2019)

O estudo analisa a possibilidade de geração de energia elétrica através da recuperação do calor residual gerado no processo de lingotamento contínuo de aço. Utilizando módulos termoelétricos com dimensões de 64,5 mm × 64,5 mm × 8,5 mm, os autores demonstraram que é possível gerar até 12,3 W por módulo com uma diferença de temperatura entre 800 °C (lado quente) e 50 °C (lado frio). Foram

realizadas simulações térmicas e de fluxo de calor, indicando que essa energia poderia abastecer sensores ou até mesmo parte da iluminação industrial. O trabalho evidencia a viabilidade de conversão termoelétrica em ambientes industriais de alta temperatura.

B. Desenvolvimento e estudo de um gerador termoelétrico para recuperação de calor residual

Santos, G. F. – UNIFESP (2022)

Este trabalho apresenta o projeto, construção e testes de um protótipo de gerador termoelétrico modular voltado à recuperação de calor em processos industriais, como fundição e soldagem. O dispositivo, chamado TEGO, foi desenvolvido com múltiplos TEGs conectados em série e acoplados a uma superfície quente. O estudo analisou a eficiência elétrica dos módulos e a dissipação térmica, alcançando uma eficiência de até 17,6% da potência teórica dos TEGs. O projeto demonstrou que é possível criar soluções reutilizáveis, seguras e de fácil implementação para converter calor desperdiçado em energia elétrica.

C. Geradores termoelétricos para conversão de calor residual em unidades de tratamento de resíduos

Silva, R.; Souza, T.; Martins, V. – APESB (2020)

Aplicado em uma planta de tratamento de resíduos, este estudo investigou a viabilidade do uso de TEGs acoplados ao sistema de exaustão de gases quentes gerados pela queima de biogás. Com temperatura de entrada variando entre 300 e 400 °C, os módulos termoelétricos foram capazes de gerar até 1,22 W/m². A energia gerada foi usada para alimentar pequenos sensores e sistemas de telemetria, reduzindo o consumo elétrico da planta. A pesquisa destaca a relevância dos TEGs em aplicações sustentáveis e descentralizadas, mesmo em condições térmicas menos extremas que a soldagem.

2.2 COMPARAÇÃO

Os três estudos analisados oferecem base técnica relevante para o desenvolvimento deste projeto, que propõe a utilização de módulos termoelétricos em bancadas de solda para reaproveitamento do calor residual. O trabalho de Corrêa et al. (2019) destaca a aplicação de TEGs em processos de lingotamento contínuo, utilizando módulos idênticos aos propostos neste projeto (64,5 mm × 64,5 mm × 8,5 mm), operando em temperaturas similares (800 °C/50 °C), com geração de até 12,3 W por unidade.

O estudo de Santos (2022) apresenta o desenvolvimento de um protótipo termoelétrico modular para ambientes industriais, com eficiência real variando entre 13% e 17,6% da capacidade teórica dos módulos, o que comprova sua aplicabilidade prática em contextos como o de bancadas de solda.

Já Silva et al. (2020) exploram a instalação de TEGs em sistemas de exaustão de plantas de resíduos, demonstrando o uso da energia gerada para alimentar sensores e sistemas de monitoramento, reforçando a viabilidade de aplicações sustentáveis e descentralizadas — proposta também visada neste projeto.

3. FUNDAMENTAÇÃO TEÓRICA

3.1 EFICIÊNCIA ENERGÉTICA NO SETOR INDUSTRIAL

A eficiência energética constitui um dos pilares da sustentabilidade industrial, representando não apenas uma estratégia de redução de custos operacionais, mas também um compromisso com a mitigação dos impactos ambientais. De acordo com a Agência Internacional de Energia (IEA, 2021), a eficiência energética pode reduzir em até 40% o consumo global de energia projetado até 2050.

No setor metalúrgico, processos como a soldagem consomem grandes quantidades de energia elétrica e liberam calor em excesso no ambiente, configurando perdas energéticas significativas (SILVA; PEREIRA; MOURA, 2020). A recuperação desse calor residual, entretanto, apresenta desafios técnicos e econômicos, visto que tecnologias tradicionais, como trocadores de calor e sistemas de refrigeração, possuem limitações quanto à eficiência de conversão e aos custos de implementação (CAMPOS; REZENDE, 2019).

3.2 GERADORES TERMOELÉTRICOS E O EFEITO SEEBECK

Os geradores termoelétricos (TEG – Thermoelectric Generators) são dispositivos de estado sólido capazes de converter diferenças de temperatura diretamente em energia elétrica, por meio do efeito Seebeck. Este fenômeno, descoberto em 1821 por Thomas Seebeck, consiste na geração de uma tensão elétrica em um circuito fechado formado por dois condutores distintos submetidos a uma diferença de temperatura (ROWE; MIN, 2017).

Além de sua simplicidade construtiva, os TEGs apresentam vantagens como a ausência de partes móveis, baixa manutenção e possibilidade de miniaturização. Contudo, sua eficiência ainda é limitada, com valores médios variando entre 5% e 8%, a depender dos materiais utilizados e do gradiente térmico aplicado (GONZÁLEZ et al., 2021).

3.3 APLICAÇÕES INDUSTRIAIS DOS TEGS

O uso de TEGs vem sendo estudado em diferentes setores, com destaque para a indústria automotiva, onde há pesquisas voltadas à conversão do calor dos gases de

escape em eletricidade para alimentar sistemas auxiliares (YANG et al., 2018). No ambiente industrial, investigações demonstram a viabilidade de empregar módulos termoelétricos em processos de soldagem, fundição e usinagem, que são atividades caracterizadas pela elevada geração de calor residual (LIU; TAN; ZHANG, 2020).

No caso específico de bancadas de solda, a utilização de TEGs pode representar uma solução inovadora para reduzir a dependência energética de fontes externas, aproveitando a energia térmica dissipada durante a operação para alimentar sensores de monitoramento, sistemas de ventilação local ou iluminação auxiliar.

3.4 VIABILIDADE TÉCNICA E ECONÔMICA

A viabilidade da implementação de sistemas termoelétricos em ambientes industriais depende de fatores técnicos, como a escolha dos materiais semicondutores (Bi2_22Te3_33, PbTe, SiGe, entre outros), o gerenciamento térmico e o custo por watt gerado. Embora os TEGs ainda apresentem baixo rendimento em larga escala, sua aplicação em nichos específicos pode ser justificada quando a energia recuperada é suficiente para reduzir o consumo elétrico de dispositivos auxiliares (MARTINS; OLIVEIRA, 2019).

Outro aspecto relevante é o custo-benefício em comparação com outras formas de recuperação energética. Apesar de o custo inicial dos módulos termoelétricos ser relativamente elevado, sua vida útil prolongada e baixa necessidade de manutenção tornam-nos competitivos em determinadas aplicações industriais (IEA, 2021).

3.5 LACUNAS NO CONHECIMENTO E CONTRIBUIÇÃO DA PESQUISA

Apesar dos avanços na pesquisa e desenvolvimento de sistemas termoelétricos, ainda existem lacunas a serem exploradas, tais como:

A análise da eficiência de TEGs em condições reais de operação em bancadas de solda, considerando a irregularidade da variação térmica;

A integração de TEGs com sistemas de monitoramento e controle em tempo real;

A avaliação econômica considerando a redução efetiva de custos de energia

em diferentes escalas de produção.

Dessa forma, o presente estudo busca contribuir ao investigar a viabilidade técnica e econômica da implementação de geradores termoelétricos em bancadas de solda, oferecendo subsídios práticos e teóricos para otimizar a eficiência energética no setor industrial.

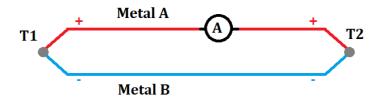


Figura 1 – Representação esquemática do efeito Seebeck.

Fonte: Professor Renato (2020)

4. METODOLOGIA

4.0.1 MÉTODOS E PROCEDIMENTOS

O estudo será conduzido por meio da concepção, montagem e avaliação de um protótipo de gerador termoelétrico. As etapas metodológicas previstas incluem:

- 1. Revisão bibliográfica;
- 2. Projeto do sistema;
- 3. Construção do protótipo;
- 4. Testes experimentais;
- 5. Análise de resultados.

4.0.2 FERRAMENTAS E TÉCNICAS UTILIZADAS

Serão utilizados os seguintes materiais e instrumentos:

- 1. Módulos termoelétricos TEG (64,5 mm × 64,5 mm × 8,5 mm);
- 2. Bancada de solda como fonte de calor;
- 3. Dissipador de alumínio com cooler;
- 4. Sensores de temperatura tipo K;
- Multímetro digital e sistema de aquisição de dados;
- Bateria automotiva de 12V;
- 7. Softwares Excel e Matlab para análise de dados.

4.0.3 LOCAL DE ESTUDO

A pesquisa será conduzida em laboratório de eletromecânica e soldagem da Escola Técnica Frederico G Schmidt (São Leopoldo – RS), utilizando bancadas de solda industriais disponíveis no espaço físico da instituição.

4.0.4 PERÍODO DE REALIZAÇÃO

O desenvolvimento do projeto iniciou-se em fevereiro de 2025 e continuará até julho de 2026.

4.0.5 TESTES E ENSAIOS PROPOSTOS

- 1. Teste de variação térmica: medir a diferença de temperatura entre as superfícies do módulo.
- Teste de dissipação: avaliar a eficiência do cooler e do dissipador.
- Teste de carga: verificar a capacidade de alimentar diferentes dispositivos elétricos.
- Teste de durabilidade: observar a estabilidade do módulo após ciclos de aquecimento e resfriamento.
- Análise comparativa: comparar os resultados experimentais com dados da literatura.

4.0.6 CONSIDERAÇÕES NORMATIVAS

Serão consideradas normas técnicas como a ABNT NBR 6175:2019, além de regulamentos de segurança elétrica (NR-10) e de processos industriais (NR-12), garantindo que modificações construtivas e operacionais estejam de acordo com a legislação vigente.

4.1 TIPO DE PESQUISA

Quanto à abordagem, esta pesquisa é classificada como quantitativa, pois trabalha com a mensuração de dados numéricos, como potência gerada, diferença de temperatura entre as superfícies do módulo termoelétrico e eficiência energética, que serão analisados de forma objetiva.

Quanto aos objetivos, caracteriza-se como uma pesquisa descritiva e exploratória. É descritiva porque busca detalhar o desempenho do gerador termoelétrico em diferentes condições de operação, registrando e analisando as variáveis envolvidas. É também exploratória, uma vez que investiga a viabilidade de um sistema de reaproveitamento de calor residual em bancadas de solda, um tema ainda pouco explorado na literatura e no setor industrial.

4.2 DESENHO MECÂNICO

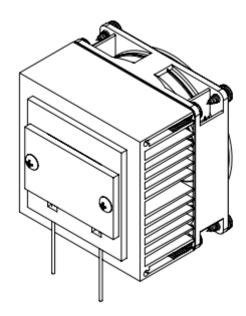


Figura 2 - Protótipo TEG (Autores)

4.3 ESQUEMA ELÉTRICO

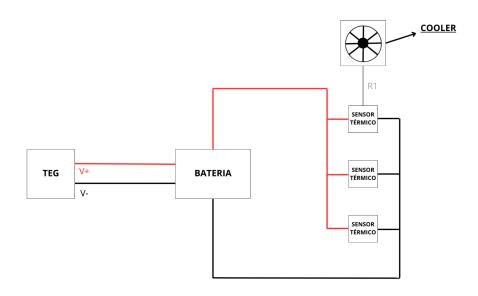


Figura 3 - Fluxograma Elétrico (Autores)

4.3.1 DESCRIÇÃO DE FUNCIONAMENTO

Ao começar a absorver calor pelo dispositivo (TEG), a energia térmica é transformada em energia elétrica e armazenada em uma bateria de 12V. Após a energia ser armazenada, seu destino final pode ser variável, no exemplo da figura foi utilizado para energizar 3 sensores térmicos, que podem medir a temperatura ambiente, de máquinas e até mesmo da própria bancada de solda.

5. CRONOGRAMA

Tabela 1 – Cronograma

2025	MAR	ABR	MAI	JUN	JUL	AGO	SET	OUT	NOV
Escolha do tema	Х								
Levantamento de literatura científica		Х							
Introdução		Х							
Tema		Х							
Problema			Х						
Objetivos			Х						
Justificativa			Х						
Estado da Arte				Х	Х				
Fundamentação teórica						Х			
Metodologia							Х		
Cronograma							Х		
Recursos							Х		
Resultados esperados ou parciais							Х		
Referências	Х	Х	Х	Х	Х	Х	Х		
Avaliação do CRC									Х
Produção do Banner							Х		
27ª Exposchmidt								Х	

6. RECURSOS

Tabela 2 - Recursos

Material	Valor unitário	Quanti dade	Valor total	Fonte	Data	
Módulo Peltier TEG SP1848-27145	R\$21.96	1	R\$21.96	Mercado Livre	04/09/2025	
Dissipador de Calor Alumínio P/ Relé Estado Sólido Até 40A Xw Alumínio	R\$40,55	1	R\$40,55	Mercado livre	04/09/2025	
Sensor de Temperatura Termopar Tipo K	R\$37,86	1	R\$37,86	Mercado Livre	04/09/2025	
Multímetro Digital CAT III ET-1507B Minipa	R\$194,15	1	R\$194,15	Amazon	04/09/2025	
Bateria Automotiva Pioneiro F60E 12V 60Ah	R\$299,00	1	R\$299,00	Magazine Luiza	04/09/2025	

Valor final: R\$593,52

7. RESULTADOS ESPERADOS OU PARCIAIS

7.1 PRODUTO FINAL DA PESQUISA

O produto final da pesquisa consiste em um gerador termoelétrico (TEG) para bancadas de solda, capaz de converter o calor residual do processo de soldagem em energia elétrica utilizável. O protótipo será composto por:

Módulos termoelétricos TEG dimensionados (64,5 mm × 64,5 mm × 8,5 mm);

Dissipadores com coolers para manutenção da diferença térmica;

Sistema de aquisição de dados com sensores de temperatura e multímetro digital;

Sistema de armazenamento em bateria automotiva de 12V.

O dispositivo terá como funcionalidade principal a geração de energia elétrica para alimentar pequenos dispositivos auxiliares, como sensores de monitoramento da bancada, iluminação e ventilação local.

7.2 DESEMPENHO ESPERADO

Com base nos dados fornecidos pelos módulos TEG e na literatura consultada, espera-se que:

Cada módulo gere aproximadamente 12,3 W com ΔT de 750 °C (lado quente 800 °C e lado frio 50 °C);

A eficiência do sistema varie entre 5% a 8%, dependendo da eficácia do dissipador e do cooler;

O protótipo seja capaz de alimentar sensores e dispositivos auxiliares da bancada de solda, reduzindo a dependência da rede elétrica convencional;

A durabilidade do sistema seja compatível com ciclos repetitivos de soldagem, sem degradação significativa dos módulos.

7.3 CONTRIBUIÇÃO SOCIOECONÔMICA, TÉCNICO-CIENTÍFICA E AMBIENTAL

Socioeconômica: Redução do consumo de energia elétrica em bancadas de solda, diminuindo custos operacionais e contribuindo para a economia das indústrias; possibilidade de aplicação em pequenas oficinas e escolas técnicas, incentivando inovação tecnológica local.

Técnico-científica: Proporciona dados experimentais sobre a eficiência de módulos termoelétricos em processos de soldagem, abrindo caminhos para pesquisas futuras em recuperação de calor residual e otimização de TEGs em ambiente industrial.

Ambiental: Aproveitamento de calor residual que normalmente seria dissipado no ambiente, contribuindo para a redução da pegada energética e emissão de gases associados à produção elétrica convencional.

7.4 VIABILIDADE E RESOLUÇÃO DO PROBLEMA DE PESQUISA

O protótipo representa uma solução prática e viável para o problema de desperdício energético em processos de soldagem. Em termos de:

Custos: O investimento inicial estimado para materiais é de aproximadamente R\$593,52, valor compatível com pequenas e médias empresas ou laboratórios.

Prazos: O desenvolvimento completo será realizado entre fevereiro e julho de 2026.

Recursos materiais: São de fácil aquisição no mercado nacional, com fornecedores conhecidos e produtos testados em aplicações similares.

7.5 RESULTADOS PARCIAIS E LIMITAÇÕES

A expectativa é que os testes iniciais confirmem a geração de energia conforme projetado para as condições de bancada de solda, permitindo ajustes finos no posicionamento do módulo e eficiência do dissipador.

Limitações potenciais incluem: degradação térmica do módulo em ciclos prolongados, variações na temperatura da bancada que podem reduzir a eficiência, e capacidade limitada de energia gerada para cargas maiores que sensores e pequenos dispositivos.

7.6 PROJEÇÕES FUNDAMENTADAS

Com base na fundamentação teórica e na metodologia aplicada, projeta-se que:

Cada bancada equipada com o protótipo possa gerar energia suficiente para alimentar sistemas de monitoramento e pequenas cargas, recuperando parte significativa do calor desperdiçado;

A implementação em escala industrial poderá reduzir o consumo de energia elétrica em até 10% a 15%, dependendo do número de módulos instalados e da frequência de utilização da bancada;

A pesquisa servirá como base para futuras melhorias em projetos de TEG aplicados a outros processos industriais que geram calor residual.

REFERÊNCIAS

CAMPOS, A. L.; REZENDE, F. G. Eficiência energética e recuperação de calor em processos metalúrgicos. *Revista Engenharia em Foco*, v. 11, n. 2, p. 45-56, 2019.

GONZÁLEZ, P. et al. Advances in thermoelectric materials for energy harvesting. *Journal of Materials Science*, v. 56, p. 13985-14002, 2021.

INTERNATIONAL ENERGY AGENCY (IEA). *Energy Efficiency 2021*. Paris: IEA, 2021.

LIU, Y.; TAN, G.; ZHANG, Q. Industrial waste heat recovery using thermoelectric generators. *Energy Reports*, v. 6, p. 175-185, 2020.

MARTINS, P.; OLIVEIRA, J. Sistemas termoelétricos aplicados à indústria: análise de viabilidade. *Cadernos de Energia*, v. 7, n. 1, p. 23-34, 2019.

ROWE, D. M. *Thermoelectrics Handbook: Macro to Nano*. Boca Raton: CRC Press, 2006.

ROWE, D.; MIN, G. Thermoelectric energy conversion systems. *Renewable and Sustainable Energy Reviews*, v. 77, p. 890-902, 2017.

SILVA, R. A.; PEREIRA, T. S.; MOURA, A. C. Gestão energética em processos industriais: desafios e oportunidades. *Revista Brasileira de Engenharia Mecânica*, v. 42, n. 3, p. 201-210, 2020.

YANG, J. et al. Automotive applications of thermoelectric technology. *Journal of Electronic Materials*, v. 47, p. 3127-3141, 2018.

ANEXOS